caterer's problem - definitie. Wat is caterer's problem
Diclib.com
Woordenboek ChatGPT
Voer een woord of zin in in een taal naar keuze 👆
Taal:

Vertaling en analyse van woorden door kunstmatige intelligentie ChatGPT

Op deze pagina kunt u een gedetailleerde analyse krijgen van een woord of zin, geproduceerd met behulp van de beste kunstmatige intelligentietechnologie tot nu toe:

  • hoe het woord wordt gebruikt
  • gebruiksfrequentie
  • het wordt vaker gebruikt in mondelinge of schriftelijke toespraken
  • opties voor woordvertaling
  • Gebruiksvoorbeelden (meerdere zinnen met vertaling)
  • etymologie

Wat (wie) is caterer's problem - definitie

SEQUENCE OF INTEGERS
Circle cutting problem; Lazy caterer sequence; Central polygonal numbers; Lazy Caterer's Sequence; A000124
  • The maximum number of pieces from consecutive cuts are the numbers in the Lazy Caterer's Sequence.

Knapsack problem         
  • multiple constrained problem]] could consider both the weight and volume of the boxes. <br />(Solution: if any number of each box is available, then three yellow boxes and three grey boxes; if only the shown boxes are available, then all except for the green box.)
  • A demonstration of the dynamic programming approach.
PROBLEM IN COMBINATORIAL OPTIMIZATION
0/1 knapsack problem; 0-1 knapsack problem; Unbounded knapsack problem; Unbounded Knapsack Problem; Binary knapsack problem; Napsack problem; Backpack problem; 0-1 Knapsack problem; Integer knapsack problem; Knapsack Problem; Algorithms for solving knapsack problems; Methods for solving knapsack problems; Approximation algorithms for the knapsack problem; Bounded knapsack problem; Multiple knapsack problem; Rucksack problem; Computational complexity of the knapsack problem
The knapsack problem is a problem in combinatorial optimization: Given a set of items, each with a weight and a value, determine the number of each item to include in a collection so that the total weight is less than or equal to a given limit and the total value is as large as possible. It derives its name from the problem faced by someone who is constrained by a fixed-size knapsack and must fill it with the most valuable items.
0/1 knapsack problem         
  • multiple constrained problem]] could consider both the weight and volume of the boxes. <br />(Solution: if any number of each box is available, then three yellow boxes and three grey boxes; if only the shown boxes are available, then all except for the green box.)
  • A demonstration of the dynamic programming approach.
PROBLEM IN COMBINATORIAL OPTIMIZATION
0/1 knapsack problem; 0-1 knapsack problem; Unbounded knapsack problem; Unbounded Knapsack Problem; Binary knapsack problem; Napsack problem; Backpack problem; 0-1 Knapsack problem; Integer knapsack problem; Knapsack Problem; Algorithms for solving knapsack problems; Methods for solving knapsack problems; Approximation algorithms for the knapsack problem; Bounded knapsack problem; Multiple knapsack problem; Rucksack problem; Computational complexity of the knapsack problem
<application> The knapsack problem restricted so that the number of each item is zero or one. (1995-03-13)
knapsack problem         
  • multiple constrained problem]] could consider both the weight and volume of the boxes. <br />(Solution: if any number of each box is available, then three yellow boxes and three grey boxes; if only the shown boxes are available, then all except for the green box.)
  • A demonstration of the dynamic programming approach.
PROBLEM IN COMBINATORIAL OPTIMIZATION
0/1 knapsack problem; 0-1 knapsack problem; Unbounded knapsack problem; Unbounded Knapsack Problem; Binary knapsack problem; Napsack problem; Backpack problem; 0-1 Knapsack problem; Integer knapsack problem; Knapsack Problem; Algorithms for solving knapsack problems; Methods for solving knapsack problems; Approximation algorithms for the knapsack problem; Bounded knapsack problem; Multiple knapsack problem; Rucksack problem; Computational complexity of the knapsack problem
<application, mathematics> Given a set of items, each with a cost and a value, determine the number of each item to include in a collection so that the total cost is less than some given cost and the total value is as large as possible. The 0/1 knapsack problem restricts the number of each items to zero or one. Such constraint satisfaction problems are often solved using dynamic programming. The general knapsack problem is NP-hard, and this has led to attempts to use it as the basis for public-key encryption systems. Several such attempts failed because the knapsack problems they produced were in fact solvable by polynomial-time algorithms. [Are there any trusted knapsack-based public-key cryptosystems?]. (1995-04-10)

Wikipedia

Lazy caterer's sequence

The lazy caterer's sequence, more formally known as the central polygonal numbers, describes the maximum number of pieces of a disk (a pancake or pizza is usually used to describe the situation) that can be made with a given number of straight cuts. For example, three cuts across a pancake will produce six pieces if the cuts all meet at a common point inside the circle, but up to seven if they do not. This problem can be formalized mathematically as one of counting the cells in an arrangement of lines; for generalizations to higher dimensions, see arrangement of hyperplanes.

The analogue of this sequence in three dimensions is the cake numbers.